Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles
نویسندگان
چکیده
Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN-RITC-BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g(-1) nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN-RITC-BSAO complex, characterized by a specific activity of 0.81 IU g(-1,) could be used in the presence of polyamines to create a fluorescent magnetically drivable H(2)O(2) and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.
منابع مشابه
Inhibition of bovine plasma semicarbazide-sensitive amine oxidase by caffeine.
Semicarbazide-sensitive amine oxidase (SSAO) is a copper-containing enzyme that catalyzes the oxidative deamination of endogenous and exogenous primary amines. SSAO exists in mammals both as a plasma-soluble and as a membrane-bound form, and its active site is able to come into contact with numerous xenobiotic, amine-containing compounds. The kinetic studies performed in this work showed that c...
متن کاملNanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).
Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/...
متن کاملPurification and characterization of membrane-bound semicarbazide-sensitive amine oxidase (SSAO) from bovine lung.
Semicarbazide-sensitive amine oxidase (SSAO) has been purified from bovine lung microsomes in a form which is catalytically active and stable to storage. The enzyme, an integral membrane protein, was solubilized with Triton X-100 and purification was achieved, in the presence of detergent, by chromatography with Cibacron Blue 3GA-agarose, hydroxylapatite, Lens culinaris-agarose, Resource Q-FPLC...
متن کاملTyrosine codon corresponds to topa quinone at the active site of copper amine oxidases.
The recently discovered organic cofactor of bovine serum amine oxidase, topa quinone, is an uncommon amino acid residue in the polypeptide backbone (Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur, S., Maltby, D., Burlingame, A. L., and Klinman, J. P. (1990) Science 248, 981-987). The amine oxidase gene from the yeast Hansenula polymorpha has been cloned and sequenced (Bruinenberg, P. G., ...
متن کاملProbing the origin of in situ generated nanoparticles as sustainable oxidation catalysts.
A novel method for the in situ generation of catalytically active small metal nanoparticles, by anion extrusion on a parent porous copper chloropyrophosphate framework, has been developed to generate gold, platinum and palladium nanoparticles for sustainable catalytic oxidations using molecular oxygen as the oxidant. Transmission electron microscopy coupled with detailed structural and physico-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012